High-Speed VLSI Architecture Based on Massively Parallel Processor Arrays for Real-Time Remote Sensing Applications
نویسندگان
چکیده
Developing computationally efficient processing techniques for massive volumes of hyperspectral data is critical for space-based Earth science and planetary exploration (see for example, (Plaza & Chang, 2008), (Henderson & Lewis, 1998) and the references therein). With the availability of remotely sensed data from different sensors of various platforms with a wide range of spatiotemporal, radiometric and spectral resolutions has made remote sensing as, perhaps, the best source of data for large scale applications and study. Applications of Remote Sensing (RS) in hydrological modelling, watershed mapping, energy and water flux estimation, fractional vegetation cover, impervious surface area mapping, urban modelling and drought predictions based on soil water index derived from remotelysensed data have been reported (Melesse et al., 2007). Also, many RS imaging applications require a response in (near) real time in areas such as target detection for military and homeland defence/security purposes, and risk prevention and response. Hyperspectral imaging is a new technique in remote sensing that generates images with hundreds of spectral bands, at different wavelength channels, for the same area on the surface of the Earth. Although in recent years several efforts have been directed toward the incorporation of parallel and distributed computing in hyperspectral image analysis, there are no standardized architectures or Very Large Scale Integration (VLSI) circuits for this purpose in remote sensing applications. Additionally, although the existing theory offers a manifold of statistical and descriptive regularization techniques for image enhancement/reconstruction, in many RS application areas there also remain some unsolved crucial theoretical and processing problems related to the computational cost due to the recently developed complex techniques (Melesse et al., 2007), (Shkvarko, 2010), (Yang et al., 2001). These descriptive-regularization techniques are associated with the unknown statistics of random perturbations of the signals in turbulent medium, imperfect array calibration, finite dimensionality of measurements, multiplicative signal-dependent speckle noise, uncontrolled antenna vibrations and random carrier trajectory deviations in the case of Synthetic Aperture Radar (SAR) systems (Henderson & Lewis, 1998), (Barrett & Myers, 2004). Furthermore, these techniques are not suitable for
منابع مشابه
Systematic Methodology of Mapping Signal Processing Algorithms into Arrays of Processors
Nowadays high speed signal processing has become the only alternative in modern communication system, given the rapidly growing microelectronics technology. This high speed, real time signal processing depends critically both on the parallel algorithms and on parallel processor technology. Special purpose array processor structures will have become the real possibility for high speed signal pro...
متن کاملFPGA Implementation of JPEG and JPEG2000-Based Dynamic Partial Reconfiguration on SOC for Remote Sensing Satellite On-Board Processing
This paper presents the design procedure and implementation results of a proposed hardware which performs different satellite Image compressions using FPGA Xilinx board. First, the method is described and then VHDL code is written and synthesized by ISE software of Xilinx Company. The results show that it is easy and useful to design, develop and implement the hardware image compressor using ne...
متن کاملDesign and Implementation of Digital Demodulator for Frequency Modulated CW Radar (RESEARCH NOTE)
Radar Signal Processing has been an interesting area of research for realization of programmable digital signal processor using VLSI design techniques. Digital Signal Processing (DSP) algorithms have been an integral design methodology for implementation of high speed application specific real-time systems especially for high resolution radar. CORDIC algorithm, in recent times, is turned out to...
متن کاملUltra-Low-Energy DSP Processor Design for Many-Core Parallel Applications
Background and Objectives: Digital signal processors are widely used in energy constrained applications in which battery lifetime is a critical concern. Accordingly, designing ultra-low-energy processors is a major concern. In this work and in the first step, we propose a sub-threshold DSP processor. Methods: As our baseline architecture, we use a modified version of an existing ultra-low-power...
متن کاملOn-board neural-processor design for an intelligent multi-sensor microspacecraft
A compact VLSI neural proeessor based on the Optimi?.ation Cellular Neural Network (OCNN) has been under development to pmv-ide a wide range of support for an intelligent remote sensing mierospacecraft which requires both high bandwidth communication and high-performance computing for on-board data analysis, thematic data reduction, synergy of multiple ty-px of sensors, and other advanced smart...
متن کامل